Enhanced Hierarchical Clustering for Gene Expression data
نویسندگان
چکیده
منابع مشابه
Hierarchical Clustering of Gene Expression Data
Rapid development of biological technologies generates a hug amount of data, which provides a processing and global view of the gene expression levels across different conditions and over multiple stages. Analyzation and interpretation of these massive data is a challenging task. One of the most important steps is to extract useful and rational fundamental patterns of gene expression inherent i...
متن کاملHIERARCHICAL DATA CLUSTERING MODEL FOR ANALYZING PASSENGERS’ TRIP IN HIGHWAYS
One of the most important issues in urban planning is developing sustainable public transportation. The basic condition for this purpose is analyzing current condition especially based on data. Data mining is a set of new techniques that are beyond statistical data analyzing. Clustering techniques is a subset of it that one of it’s techniques used for analyzing passengers’ trip. The result of...
متن کاملEnhanced Correlation Search Technique For Clustering Cancer Gene Expression Data
The advent of DNA Microarray technologies has revolutionized the experimental studies of gene expressions. In the post-genomics era, clustering analysis has become a valuable tool for in-silico analysis of gene expression profiles. Although a number of clustering methods have been proposed, they are confronted with difficulties in meeting the requirements of high quality, large memory, performa...
متن کاملPerformance Analysis of Enhanced Clustering Algorithm for Gene Expression Data
Microarrays are made it possible to simultaneously monitor the expression profiles of thousands of genes under various experimental conditions. It is used to identify the co-expressed genes in specific cells or tissues that are actively used to make proteins. This method is used to analysis the gene expression, an important task in bioinformatics research. Cluster analysis of gene expression da...
متن کاملKernel hierarchical gene clustering from microarray expression data
MOTIVATION Unsupervised analysis of microarray gene expression data attempts to find biologically significant patterns within a given collection of expression measurements. For example, hierarchical clustering can be applied to expression profiles of genes across multiple experiments, identifying groups of genes that share similar expression profiles. Previous work using the support vector mach...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Computer Applications
سال: 2010
ISSN: 0975-8887
DOI: 10.5120/436-665